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Abstract

Label semantics is a random set based framework for ‘‘Computing with Words’’ that

captures the idea of computation on linguistic terms rather than numerical quantities.

Within this new framework, a decision tree learning model is proposed where nodes

are linguistic descriptions of variables and leaves are sets of appropriate labels. In such

decision trees, the probability estimates for branches across the whole tree is used for

classification, instead of the majority class of the single branch into which the examples

fall. By empirical experiments on real-world datasets it is verified that our algorithm has

better or equivalent classification accuracy compared to three well known machine

learning algorithms. By applying a new forward branch merging algorithm, the com-

plexity of the tree can be greatly reduced without significant loss of accuracy. Finally,

a linguistic interpretation of trees and classification with linguistic constraints are

introduced.
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1. Introduction

Machine learning and data mining research has developed rapidly in recent

decades. As one of the most successful branches of Artificial Intelligence, it is

playing a more and more important role in real-world applications ranging

from gene expression to flood prediction. Traditionally machine learning and
data mining research has focused on learning algorithms with high classifica-

tion or prediction accuracy. From another perspective, however, this is not al-

ways sufficient for some real world applications that require good algorithm

transparency. By the latter we mean that models need to be easily understood

and provide information regarding underlying trends and relationships that

can be used by practitioners in the relevant fields. Also, uncertainty and impre-

cision are often inherent in modelling these real-world applications and it is

desirable that these should be incorporated into learning algorithms.
Here we present a high-level knowledge representation framework centered

on the Computing with Words (CW) paradigm proposed by Zadeh [20],

although the underlying semantics of our approach will be quite different. La-

bel semantics [11] is a random set based semantics for modelling imprecise con-

cepts where the degree of appropriateness of a linguistic expression as a

description of a value is measured in terms of how the set of appropriate labels

for that value varies across a population. It provides us with a framework for

modelling uncertainty with good transparency. Based on this semantics, a new
tree-structured model, Linguistic Decision Tree (LDT) is proposed. Linguistic

expressions such as small, medium and large are used to learn from data and

build a linguistic decision tree guided by information based heuristics. For each

branch, instead of labeling it with a certain class (such as positive or negative in

binary classification) the probability of members of this branch belonging to a

particular class is evaluated from a given training dataset. Unlabeled data is

then classified by using probability estimation of classes across the whole deci-

sion tree.
This paper is organized as follows. Section 2 presents the fundamentals of

label semantics as well as the methods for data analysis and data mining based

on this framework. Section 3 gives a detailed description of the proposed lin-

guistic decision tree model, and an algorithm of building such a decision tree

is outlined. We also investigate the effect of using different discretization meth-

ods with empirical results given for comparisons. Experimental results for real-

world datasets are given, comparing the new algorithm with three well-known

machine learning algorithms: C4.5, Naive Bayes and Back Propagation Neural
networks. In Section 4, a forward branch merging algorithm is introduced in

order to build a compact decision tree without significant loss of accuracy.

Experimental results show that the trees with forward merging have better

transparency and equivalent or better accuracy than the original LDT. In Sec-

tion 5, a formal linguistic interpretation of LDT and a method for classification



Table 1

Notation for this paper

X Continuous universe LA Set of linguistic labels

L Linguistic label lL(x) Appropriate degree of

D Numerical database using L to label x

LD Linguistic database from N Number of instances

linguistic translation of D n Number of attribute

C Set of target attributes m Number of classes

NF Number of fuzzy sets s Number of branches

mx Mass assignment on x F Focal set

F Focal element mx(F) Associated mass of F

M A set of focal k The length of a branch

elements for merging LDT Linguistic decision tree

MB Merged branch B Branch of a LDT

T Threshold for termination Tm Threshold for merging

h Linguistic expressions pm Prior mass assignment
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given linguistic constraints is proposed and the results from applying it to a

toy problem are given. Prior to the introduction of the formal framework

we introduce some important notation used throughout this paper as shown

in Table 1.
2. Label semantics

Label semantics, proposed by Lawry [11], is a framework for modelling

with linguistic expressions, or labels such as small, medium and large. Such la-

bels are defined by overlapping fuzzy sets which are used to cover the universe

of continuous variables. Some recent research has applied this framework to
machine learning systems, and in particular to a fuzzy Bayesian model [18].

Here we will apply label semantics to the problem of decision tree induction.

Initially, however, a brief overview of label semantics is given in the following

section.

2.1. Random set based framework

The fundamental question posed by label semantics is how to use linguistic
expressions to label numerical values. The basic idea is that when individuals

make assertions, such as �x is small�, they are essentially providing information

about what labels are appropriate for the values of x. For example, for a var-

iable x into a domain of discourse denoted by X we identify a finite set of lin-

guistic labels LA = {L1, . . . , Ln} with which to label the values of x. Then, for a

specific value x 2 X, an individual I identifies a subset of LA, denoted DI
x to

stand for the description of x given by I, as the set of labels with which it is
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appropriate to label x. If we allow I to vary across a population V with prior

distribution PV, then D
I
x will also vary and generate a random set denoted Dx

into the power set of LA. By evaluating the probability of occurrence of a par-

ticular set of labels say S, for Dx across the population then we obtain a distri-

bution on Dx referred to as a mass assignment (see [1] for details on Mass

Assignment theory). We can view the random set Dx as a description of the
variable x in terms of the labels in LA. More formally,

Definition 1 (Label description). For x 2 X the label description of x is a

random set from V into the power set of LA, denoted Dx, with associated

distribution mx, given by

8S � LA; mxðSÞ ¼ PV ðfI 2 V jDI
x ¼ SgÞ

In this framework, appropriateness degrees are used to evaluate how appro-

priate a label is for describing a particular value of variable x. This measure can

be defined based on mass assignments as follows:

Definition 2 (Appropriateness degrees).

8x 2 X; 8L 2 LA; lLðxÞ ¼
X

S�LA:L2S
mxðSÞ

This definition provides a relationship between mass assignments and

appropriateness degrees. Clearly lL is a function mapping from X into [0, 1]

and therefore can technically be viewed as the membership function of a fuzzy

set. In simple terms, given a particular value x, the appropriateness degree of L

as a label for x where L is represented by fuzzy set F, is the membership value

of x belonging to F. The reason we use the new term �appropriateness degree� is
partly because it more accurately reflects the underlying semantics and partly

to highlight the quite distinct calculus based on this framework.
For example, an expression such as �the score on a dice is small�, as asserted

by individual I, is interpreted to mean DI
SCORE ¼ fsmallg, where SCORE de-

notes the value of the score given by a single throw of a particular dice. When

I varies across a population V, different sets of labels could be given to describe

the variable SCORE, so that we obtain the random set of DSCORE into the

power set of LA.

Example 1. Suppose the variable SCORE with universe {1, 2, 3, 4, 5, 6} gives
the outcome of a single throw of a particular dice. Let LA = {small, medium,

large} and V = {I1, I2, I3} then a possible definition of DSCORE is given as

follows:

DI1
1 ¼ DI2

1 ¼ DI3
1 ¼ fsmallg
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DI1
2 ¼ fsmall;mediumg; DI2

2 ¼ DI3
2 ¼ fsmallg

DI1
3 ¼ DI2

3 ¼ fmediumg; DI3
3 ¼ fsmall;mediumg

DI1
4 ¼ fmedium; largeg; DI2

4 ¼ DI3
4 ¼ fmediumg

DI2
5 ¼ flargeg; DI1

5 ¼ DI3
5 ¼ fmedium; largeg

DI1
6 ¼ DI2

6 ¼ DI3
6 ¼ flargeg

Assuming a uniform prior distribution on V, so that PV = 1/jVj, then the

mass assignment of Dx can be represented according to Definition 1 as
follows:

8S � LA; mxðSÞ ¼
jfI 2 V jDI

x ¼ Sgj
jV j ð1Þ

We can determine mass assignments on DSCORE according to Eq. (1). For
example, if SCORE = 4 we have

m4ðfmedium; largegÞ ¼
jfI 2 V jDI

4 ¼ fmedium; largeggj
jV j ¼ jfI1gj

jV j ¼ 1

3

m4ðfmediumgÞ ¼
jfI 2 V jDI

4 ¼ fmediumggj
jV j ¼ jfI2; I3gj

jV j ¼ 2

3

We then have the mass assignment for SCORE = 4 as follows:

m4 ¼ fmedium; largeg :
1

3
; fmediumg :

2

3

In the sequel 1/3 and 2/3 are also referred to as the associated mass for {med-

ium, large} and {medium}, respectively. Similarly, we can obtain

m1 ¼ fsmallg : 1;m2 ¼ fsmallg :
2

3
; fsmall;mediumg :

1

3

m3 ¼ fsmall;mediumg :
1

3
; fmediumg :

2

3

m5 ¼ fmedium; largeg :
2

3
flargeg :

1

3
;m6 ¼ flargeg : 1

The values of m1, . . . , m6 are not dependent on the distribution of the data (i.e.

the distribution on {1, . . . , 6}. Rather they are dependent on the sets of appro-
priate labels assigned to each label by each voter and on the distribution across

voters. The latter in this case is assumed to be uniform.



96 Z. Qin, J. Lawry / Information Sciences 172 (2005) 91–129
2.2. Label semantics for data mining

Based on this underlying semantics, we can translate numeric data into a set

of appropriate labels with associated masses. It is certainly true that a mass

assignment on Dx determines a unique appropriateness degree for any function

but generally the converse does not hold. For example, given lL1ðxÞ ¼ 0:3 and
lL2ðxÞ ¼ 1, then possible sets of appropriate labels with associated masses are

as follows:

fL2g : 0:7; fL1; L2g : 0:3

fL1g : 0:1; fL2g : 0:8; fL1; L2g : 0:2

fL1g : 0:2; fL2g : 0:9; fL1; L2g : 0:1


 
 
 
 
 
 
 
 
 
 
 
 
 
 


In fact, there are potentially an infinite family of random sets satisfying the gi-

ven constraints [5]. This problem can be overcome by making the consonance

assumptions, according to which we can determine the mass assignment un-
iquely from the appropriateness degrees as follows.

Definition 3 (Consonant mass assignments on labels). Let {b1, . . . , bk} =

{lL(x) jL 2 LA, lL(x) > 0} ordered such that bt > bt+1 for t = 1,2, . . . , k � 1

then:

mx ¼ Mt : bt � bt�1; for t ¼ 1; 2; . . . ; k � 1

Mk : bk; M0 : 1� b1

where M0 = ; and Mt = {L 2 LA jlL(x) P bt} for t = 1,2 . . . ,k.

For the previous example, given lL1ðxÞ ¼ 0:3 and lL2ðxÞ ¼ 1, we can calcu-

late the consonant mass assignments as follows: The appropriateness degrees

are ordered as {b1, b2} = {1, 0.3} and M1 = {L2}, M2 = {L1, L2}. We then

can obtain

mx ¼ fL2g : b1 � b2; fL1; L2g : b2 ¼ fL2g : 0:7; fL1; L2g : 0:3

Because the appropriateness degrees are sorted in Definition 3 the resulting

mass assignments are ‘‘nested’’ (see Fig. 1). Clearly then, there is a unique con-

sonant mapping to mass assignments for a given set of appropriateness degree

values. The justification of the consonance assumption can be found in [1,10].
Notice that in some cases we may have non-zero mass associated with the

empty set (left-hand diagram of Fig. 1). This means that some voters believe

that x cannot be described by any labels in LA. This property would add to

the complexity of our learning algorithms and hence we avoid it by introducing

a full fuzzy covering defined as follows:
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Fig. 1. Calculating mass assignments given the consonance assumption. The right-hand figure is

with a full fuzzy covering while the left-hand figure is not.
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Definition 4 (Full fuzzy covering). Given a continuous discourse X, LA is

called a full fuzzy covering of X if:

8x 2 X; 9L 2 LA lLðxÞ ¼ 1

In another words, the full fuzzy covering assumes that, for any element,

there always exists a particular label which all the voters agree is appropriate

to describe this data, though the voters may have different opinions on other
labels. Unless otherwise stated, we will use NF fuzzy sets with 50% overlap

to cover a continuous universe (see Fig. 2), so that the appropriateness degrees

satisfy: "x 2 X, $i 2 {1, . . . , NF�1} such that lLiðxÞ ¼ a, lLiþ1ðxÞ ¼ b and
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Fig. 2. An example of a full fuzzy covering with three uniformly distributed trapezoidal fuzzy sets

with 50% overlap.
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lLjðxÞ ¼ 0 for j < i or j > i + 1 and where max(a, b) = 1. In the case that a = 1

according to the full fuzzy covering assumption, then mx has the following

form:

mx ¼ fLig : 1� b; fLi; Liþ1g : b ð2Þ
It is also important to note that, given definitions for the appropriateness de-

grees on labels, we can isolate a set of subsets of LA with non-zero masses.

These are referred to as focal sets and the appropriate labels with non-zero

masses as focal elements, more formally,

Definition 5 (Focal set). The focal set of LA is a set of focal elements defined

as

F ¼ fS � LAj9x 2 X;mxðSÞ > 0g
Based on the above assumptions (consonant, full fuzzy covering with 50%

overlap) defined on a particular universe, we can then always find the unique

and consistent translation from a given data element to a mass assignment

on focal elements, specified by the function lL :L 2 LA. We call this the linguis-

tic translation (LT), which provides us with a way of transforming real-valued
data into a set of associated masses for appropriate labels.

Definition 6 (Linguistic translation). Suppose we are given a numerical data

set D = {hx1(i), . . . , xn(i)i j i = 1, . . . , N} and focal set on attribute j : Fj ¼
fF 1

j ; . . . ; F
hj
j j j ¼ 1; . . . ; ng, from the linguistic translation, we then obtain

linguistic data set LD defined as follows:

LD ¼ fA1ðiÞ; . . . ;AnðiÞ j i ¼ 1; . . . ;Ng
AjðiÞ ¼ fhmxjðiÞðF 1

j Þ; . . . ;mxjðiÞðF
hj
j Þig

where mxjðiÞðF r
jÞ is the associated mass of focal element F r

j as appropriate labels

for data element xj(i) where r = 1, . . . , hj and j = 1, . . . , n.

For a particular attribute with an associated focal set, linguistic translation

is a process of replacing its data elements with the focal element masses of these

data elements. For a variable x, it defines a unique mapping from data element

x(i) to a vector of associated masses hmx(i)(F1), . . . , mx(i)(F h)i.

Example 2. Fig. 2 shows a full fuzzy covering of the universe X = [0, 1] with

three fuzzy labels: small, medium and large with 50% overlap. The following
focal elements occur: {small}, {small, medium}, {medium}, {medium, large} and

{large}, but the sets {small, medium, large} and {small, large} cannot occur

since at no point do small, medium and large all overlap and small and large do
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not overlap. For the data point x1 = 0.2, the appropriate labels are small and

medium, and the appropriateness degrees of these labels are read from the

membership values as follows:

lsmallð0:2Þ ¼ 1; lmediumð0:2Þ ¼ 0:5

The mass assignment on the appropriate labels can be calculated based on Eq.

(2) to give

m0:2 ¼ fsmallg : 0:5; fsmall;mediumg : 0:5

Similarly, for x2 = 0.44, x3 = 0.78, we obtain

m0:44 ¼ fsmall;mediumg : 0:3; fmediumg : 0:7

m0:78 ¼ fmedium; largeg : 0:6; flargeg : 0:4

The linguistic translation can be illustrated as follows:
3. Linguistic decision tree

Tree induction learning models have received a great deal of attention over

recent years in the fields of machine learning and data mining because of their

simplicity and effectiveness. Among them, the ID3 [16] algorithm for decision

trees induction has proved to be an effective and popular algorithm for build-

ing decision trees from discrete valued data sets. The C4.5 [17] algorithm was
proposed as a successor to ID3 in which an entropy based approach to crisp

partitioning of continuous universes was adopted. One inherent disadvantage

of crisp partitioning is that these methods make the induced decision trees sen-

sitive to noise. This noise is not only due to the lack of precision or errors in

measured features but is often present in the model itself since the available fea-

tures may not be sufficient to provide a complete model of the system. For each

attribute, disjoint classes are separated with clearly defined boundaries. These

boundaries are �critical� since a small change close to these points will probably
cause a complete change in classification. Due to the existence of uncertainty

and imprecise information in real-world problems, the class boundaries may

not be defined clearly. In this case, decision trees may produce high misclassi-

fication rates in testing even if they perform well in training [12,14].
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3.1. Fuzzy discretization and linguistic decision tree

Before we introduce a new decision tree model, the disadvantages of crisp

discretization and the advantages of fuzzy discretization are discussed. Fig. 3

shows a decision tree in a two-class problem, in which there are two continuous

attributes x and y. Using crisp discretization, the decision space is partitioned
into a set of non-overlapping subregions A1, A2 and A3, which have clear

boundaries with each other. The object for classification will definitely fall into

one of these areas. For example, the given object (x = 13.5, y = 46.0) will be

classified as A3, However, if this object is distorted due to noise so that

(x = 12.9, y = 46.2), then the object will be misclassified as A1 (see Fig. 3a).

In contrast, consider the use of fuzzy discretization (Fig. 3b), where the con-

tinuous universe is partitioned by overlapped trapezoidal fuzzy sets {x1, x2}

and {y1, y2}. As shown in right-hand figure, A1, A2 and A3 generated from fuz-
zy discretization appear as overlapping subregions with blurred boundaries.

The possibility degree of an object belonging to the each class will be given
LF1

LF2
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y

LF3

<13 >=13

>45<=45

13

45

X

Y

A1

A2

A3
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LF2

x

y

LF3
X

Y

A1

A2

A3

x1 x2

y1 y2

x1

y2

y1

x2

 (a)

(b)

Fig. 3. Illustrations of crisp discretization and fuzzy discretization for decision tree models. (This

figure was inspired by the similar figure appearing in [14].)
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by the membership of pre-defined fuzzy sets. The object will fall in the overlap-

ping area. These results can then aid the human user to make their final deci-

sions or suggest further investigation.

Many fuzzy approaches for decision tree learning have been proposed to

overcome the weaknesses described above [2,6,13,14]. In particular, Ref. [13]

gives a comprehensive overview of the fuzzy decision tree literature. Different
from other approaches, the algorithm we present here is based on label seman-

tics and emphasises algorithm transparency.

Consider a database D = {hx1(i), . . . , xn(i)i j i = 1, . . . , N} where each in-

stance has n attributes and is labeled by one of the classes: {C1, . . . , Cm}. Un-

less otherwise stated, we use uniformly distributed fuzzy sets with 50% overlap

to discretized each continuous attribute universe and obtain a corresponding

linguistic data set LD by applying linguistic translation (Definition 6). A lin-

guistic decision tree is a decision tree where the nodes are the random set label
descriptions and the branches correspond to particular focal elements based on

LD. More formally:

Definition 7 (Linguistic decision tree). A linguistic decision tree is a set of

branches with associated class probabilities of the following form:

LDT ¼ fhB1; PrðC1jB1Þ; . . . ; PrðCmjB1Þi; . . . hBs; PrðC1jBsÞ; . . . ; PrðCmÞjBsÞig

and a branch B with k nodes is defined as

B ¼ hF j1 ; . . . ; F jk i

where, k 6 n and F j 2 Fj.

F ji for i = 1, . . . , k are the branch nodes represented by focal elements of

attribute ji and i is the node position in the branch B. Within a LDT (see

Fig. 4) each node splits into branches according to the focal elements of this
LF4

LF2 LF5

Dx1

Dx2 Dx2

LF6LF1

{small1} {large1}

{small1, large1}

LF3 LF7

{small2}
{large2}

{small2, large2}

{small2}
{large2}

{small2, large2}

(0.3 0.7) (0.5 0.5) (0.6 0.4)   (0.6 0.4) (0.7 0.3) (0.2 0.8)

(0.1 0.9)

Fig. 4. An example of a linguistic decision tree on a binary classification problem.
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node (attribute). One attribute is not allowed to appear more than once in a

branch, and an attribute which is not currently part of a branch is referred

to as a free attribute.

Definition 8 (Free attributes). The set of attributes free to use for expanding a

given branch B is defined by

ATT B ¼ fxj j8F 2 Fj; F 62 Bg
The length of a branch, corresponding to the number of component nodes

(attributes), is less than or equal to n, the number of attributes. In a LDT,

the length of the longest branch is called the depth of the LDT, which is also

less than or equal to n. Each branch has an associated probability distribution

on the classes. For example, a LDT shown in Fig. 4 might be obtained from

training, the branch hh{large1}, {small2, large2}i, 0.7, 0.3i means the probabil-
ity of class C1 is 0.3 and C2 is 0.7 given attribute 1 that can be only described

as large and attribute 2 can be described as small and large. We need to be

aware that the linguistic expressions such as small, medium or large for each

attribute are not necessarily the same, since they are defined independently

on each attribute.
3.2. Evaluating class probabilities for a given branch

According to the definition of LDT (Definition 7), for a branch of a LDT of

the form of B ¼ hF j1 ; . . . ; F jk i, the probability of class Ct (t = 1, . . . , m) given B
can then be evaluated from the training linguistic dataset LD as follows:

PrðCtjBÞ ¼
SðBjLDtÞ
SðBjLDÞ ¼

P
i2LDt

Qk
r¼1

mxjrðiÞðF jrÞ

P
i2LD

Qk
r¼1

mxjrðiÞðF jrÞ
ð3Þ

where S( Æ ) is a function for calculating the sum of products of masses associ-

ated with focal elements consisting the branch B (see Example 3). LDt is the

subset consisting of instances belong to class t and S(BjLD) 5 0. In fact

S(BjLDt) is proportional to the probability that the branch is satisfied and that

the class is Ct. Similarly, S(BjLD) is proportional to the probability that the

branch is satisfied. All probabilities are calculated on the basis of the linguistic
database LD. To understand the form of the equation note that the probability

branch hF j1 ; . . . ; F jk i is satisfied by attribute values hx1, . . . , xni is simply taken

as being proportional to the product of the probabilities of focal element F jr
given xjr (i.e. mxjr

ðF jrÞÞ. This corresponds to the conditional independence

assumption that the labels appropriate to describe xjr depends only on the
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value of that variable, once known, and is independent of the values of all other

variables. These products are then summed across the relevant parts of the

database to obtain the required probabilities.

In the case of S(BjLD) = 0, which can occur when the training database for

the LDT is small then there is no non-zero linguistic data covered by the

branch. In this case, we obtain no information from the database so equal
probabilities are assigned to each class:

PrðCtjBÞ ¼
1

m
for t ¼ 1; . . . ;m if SðBjLDÞ ¼ 0 ð4Þ

At a particular depth, if one of the class probability reaches a certain threshold,

for example 0.9, then we might take the view that this branch is sufficiently dis-
criminating and that further expansion may lead to overfitting. In this case ter-

minating the tree expansion at the current depth will probably help maintain

accuracy on the test set. To this end, we employ a threshold probability to deter-

mine whether or not a particular branch should terminate.

Definition 9 (Threshold probability). In the process of building a linguistic

decision tree, if the maximum class probability given a particular branch is

greater than or equal to a given threshold probability T, then the branch will be
terminated at the current depth.

Obviously, when using this probability-based thresholding, the branches of

a tree may have different lengths. For example, see Fig. 4, where the threshold

probability is T = 0.9, so that the 4th branch h{small1, large1}i is terminated at

the depth 1 while the other branches expand to the next depth.

In the above discussion we have been concerned with continuous (or numer-

ical) attribute, but can we learn with discrete (or nominal) attributes? One
problem is that the values of discrete attributes do not have a natural ordering

like continuous ones. For example, values for a person�s age can be sorted in an

increasing manner so that the labels young, middle-aged and old, can be mean-

ingfully defined by fuzzy sets. However, if we consider the gender of a person,

there are only two possible values: male or female, which are unordered. Hence,

partitioning discrete attribute domains using fuzzy labels is problematic. In-

stead we do not attempt to group discrete values but treat discrete values as

distinct labels which do not overlap with each other. Hence, the following focal
elements for the attribute ‘‘gender’’ are: {male} and {female}. In this represen-

tation the associated masses for each focal element will be binary, i.e. either

zero or one. For instance,

mgenderðfmalegÞ ¼
1 if gender ¼ male

0 otherwise

�



Table 2

A small-scale linguistic dataset with only two attributes

Instance Attribute 1 (x1) Attribute 2 (x2) Class

{s1} {s1, l1} {l1} {s2} {s2, l2} {l2}

1 0 0.4 0.6 0 0.7 0.3 +

2 0.2 0.8 0 0.5 0.5 0 �
3 0 0.9 0.1 1 0 0 �
4 0 0 0 0 1 0 +

5 0 1 0 0.3 0.7 0 +
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Missing values can be handled simply by assigning the masses of corresponding

focal elements to zeros. For example, in Table 2, the 4th instance has a missing

value in Attribute 1. Instead of pre-processing 1 the data, we simply assign the

value zero to each mass for focal elements of this missing value.

Example 3. Consider a two-class problem with 2 attributes, where LA1 = {s-

mall1(s1), large1(l1)} and LA2 = {small2(s2), large2(l2)}. We assume the focal set

F1 ¼ ffs1g; fs1; l1g; fl1gg and F2 ¼ ffs2g; fs2; l2g; fl2gg. Suppose that the
linguistic database generated from the training database is given in Table 2,

and it has two target classes: positive (+) and negative (�). Now suppose we

are given two branches of the form:

B1 ¼ hhfsmall1g; fsmall2gi; PrðþjB1Þ; Prð�jB1Þi
B2 ¼ hhfsmall1; large1g; fsmall2; large2gi; PrðþjB2Þ; Prð�jB2Þi

These two branches are evaluated according to Eqs. (3) and (4) so that

Prðþ;B1Þ ¼

P
i¼1;4;5

Q
r¼1;2

mxjr ðiÞðF jrÞP5

i¼1

Q
r¼1;2

mxjr ðiÞðF jrÞ
¼
P

i¼1;4;5mx1ðiÞðfs1gÞ � mx2ðiÞðfs2gÞP5

i¼1mx1ðiÞðfs1gÞ � mx2ðiÞðfs2gÞ

¼ 0� 0þ 0� 0þ 0� 0:3

0� 0þ 0:2� 0:5þ 0� 1þ 0� 0þ 0� 0:3
¼ 0

Prð�;B1Þ ¼

P
i¼2;3

Q
r¼1;2

mxjr ðiÞðF jrÞP5

i¼1

Q
r¼1;2

mxjr ðiÞðF jrÞ
¼
P

i¼2;3mx1ðiÞðfs1gÞ � mx2ðiÞðfs2gÞP5

i¼1mx1ðiÞðfs1gÞ � mx2ðiÞðfs2gÞ

¼ 0:2� 0:5þ 0� 0

0� 0þ 0:2� 0:5þ 0� 1þ 0� 0þ 0� 0:3
¼ 0:1

0:1
¼ 1
1 Some data pre-processing techniques replace the missing values with the mean of this attribute

within a numerical attribute or categorize the missing values as a new value within a nominal

attribute.
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Prðþ;B2Þ ¼

P
i¼1;4;5

Q
r¼1;2

mxjr ðiÞðF jrÞP5

i¼1

Q
r¼1;2

mxjrðiÞðF jrÞ

¼
P

i¼1;4;5mx1ðiÞðfs1; l1gÞ � mx2ðiÞðfs2; l2gÞP5

i¼1mx1ðiÞðfs1; l1gÞ � mx2ðiÞðfs2; l2gÞ

¼ 0:4� 0:7þ 0� 1þ 1� 0:7

0:4� 0:7þ 0:8� 0:5þ 0:9� 0þ 0� 1þ 1� 0:7

¼ 0:28þ 0:7

0:28þ 0:4þ 0:7
¼ 0:710

Prð�;B2Þ ¼

P
i¼2;3

Q
r¼1;2

mxjr ðiÞðF jrÞP5

i¼1

Q
r¼1;2

mxjr ðiÞðF jrÞ

¼
P

i¼2;3mx1ðiÞðfs1; l1gÞ � mx2ðiÞðfs2; l2gÞP5

i¼1mx1ðiÞðfs1; l1gÞ � mx2ðiÞðfs2; l2gÞ

¼ 0:8� 0:5þ 0:9� 0

0:4� 0:7þ 0:8� 0:5þ 0:9� 0þ 0� 1þ 1� 0:7

¼ 0:4

0:28þ 0:4þ 0:7
¼ 0:290
3.3. Classification

Consider classifying a given data vector ~y ¼ hy1; . . . ; yni which may not be

contained in the training data set D. Firstly, we need to translate~y into a lin-

guistic form based on the fuzzy covering of the training data. In the case that,
for some attribute the data element appears beyond the range of training data

[Rmin, Rmax], we assign the appropriateness degrees of Rmin or Rmax to the ele-

ment depending on which side of the range it appears.

Jeffrey�s rule:

PrðaÞ ¼ PrðajbÞPrðbÞ þ Prðaj:bÞPrð:bÞ
is used for classifying a new data element, where Pr(b) and Pr(�b) are consid-
ered as the beliefs in b and not b, respectively [7]. This can be generalised when

given a new condition c:

PrðajcÞ ¼ PrðajbÞPrðbjcÞ þ Prðaj:bÞPrð:bjcÞ
Hence, we can evaluate the probabilities of class Ct based on a given LDT con-

sisting of s branches by using Jeffrey�s rule as follows:

PrðCtj~yÞ ¼
Xs
v¼1

PrðCtjBvÞPrðBvj~yÞ ð5Þ
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where PrðBj~yÞ is the probability of a particular branch given a data element.

This can be evaluated by taking the product of associated masses of focal ele-

ments of the data element along the branch. More formally,

PrðBj~yÞ ¼
Xk
r¼1

myjr
ðF jrÞ ð6Þ

In classical decision trees, classification is made according to the class label of

the branch in which the data falls. In our approach, the data for classification

partially satisfies the constraints represented by a number of branches and the
probability estimates across the whole decision tree are then used to obtain an

overall classification.

Example 4. Suppose we are given the linguistic decision tree shown in Fig. 4

for a two-class problem with F1 ¼ ffsmall1g; fsmall1; large1g; flarge1gg,
F2 ¼ ffsmall2; fsmall2; large2g; flarge2gg. A data element ~y ¼ hy1; y2i for

classification is given such that lsmall1ðy1Þ ¼ 1, llarge1ðy1Þ ¼ 0:4 and

lsmall2ðy2Þ ¼ 0:2, llarge2ðy2Þ ¼ 1.
The LDT given in Fig. 4 can be written as

LDT ¼ fB1;B2;B3;B4;B5;B6;B7g

¼ fhhfsmall1g; fsmall2gi; 0:3; 0:7i;

hhfsmall1g; fsmall2; large2gi; 0:5; 0:5i;

hhfsmall1g; flarge2gi; 0:6; 0:4i;

hhfsmall1; large1gi; 0:1; 0:9i;

hhflarge1g; fsmall2gi; 0:6; 0:4i

hhflarge1g; fsmall2; large2gi; 0:7; 0:3i

hhflarge1g; flarge2gi; 0:2; 0:8ig

The mass assignments on hy1, y2i are

my1 ¼ fsmall1; large1g : 0:4; fsmall1g : 0:6

my2 ¼ fsmall2; large2g : 0:2; flarge2g : 0:8

According to Eq. (6), we obtain that

PrðB2j~yÞ ¼ my1ðfsmall1gÞ � my2ðfsmall2; large2gÞ ¼ 0:6� 0:2 ¼ 0:12

PrðB3j~yÞ ¼ my1ðfsmall1gÞ � my2ðflarge2gÞ ¼ 0:6� 0:8 ¼ 0:48

PrðB4j~yÞ ¼ my1ðfsmall1; large1gÞ ¼ 0:4

PrðB1j~yÞ ¼ PrðB5j~yÞ ¼ PrðB6j~yÞ ¼ PrðB7j~yÞ ¼ 0
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Hence, from Jeffrey�s rule (Eq. (5)) we obtain that

PrðC1j~yÞ ¼
X7
v¼1

PrðBvj~yÞPrðC1jBvÞ ¼
X
v¼2;3;4

PrðBvj~yÞPrðC1jBvÞ

¼ 0:12� 0:5þ 0:48� 0:6þ 0:4� 0:1 ¼ 0:388

and

PrðC2j~yÞ ¼
X7
v¼1

PrðBvj~yÞPrðC2jBvÞ ¼
X
v¼2;3;4

PrðBvj~yÞPrðC2jBvÞ

¼ 0:12� 0:5þ 0:48� 0:6þ 0:4� 0:9 ¼ 0:612
3.4. LID3 algorithm

Linguistic ID3 (LID3) is the learning algorithm we propose for building the

linguistic decision tree based on a given linguistic database. Similar to the ID3

algorithm [16], search is guided by an information based heuristic, but the
information measurements of a LDT are modified in accordance with label

semantics. The measure of information defined for a branch B and can be

viewed as an extension of the entropy measure used in ID3.

Definition 10 (Branch entropy). The entropy of branch B is given by

EðBÞ ¼ �
Xm
t¼1

PrðCtjBÞlog2ðPrðCtjBÞÞ ð7Þ

Now, given a particular branch B suppose we want to expand it with the

attribute xj. The evaluation of this attribute will be given based on the expected

entropy defined as follows.

Definition 11 (Expected entropy).

EEðB; xjÞ ¼
X
F j2Fj

EðB [ F jÞ 
 PrðF jjBÞ ð8Þ

where B [ Fj represents the new branch obtained by appending the focal ele-

ment Fj to the end of branch B. The probability of Fj given B can be calculated

as follows:

PrðF jjBÞ ¼
SðB [ F jjLDÞ
SðBjLDÞ ð9Þ

We can now define the Information Gain (IG) obtained by expanding branch B

with attribute xj as

IGðB; xjÞ ¼ EðBÞ � EEðB; xjÞ ð10Þ
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The goal of tree-structured learning models is to make subregions partitioned

by branches be less ‘‘impure’’, in terms of the mixture of class labels, than the

unpartitioned dataset. For a particular branch, the most suitable free attribute

for further expanding (or partitioning), is the one by which the ‘‘pureness’’ is

maximumly increased with expanding. That corresponds to selecting the attri-

bute with maximum information gain. As with ID3 learning, the most informa-
tive attribute will form the root of a linguistic decision tree, and the tree will

expand into branches associated with all possible focal elements of this attri-

bute. For each branch, the free attribute with maximum information gain will

be the next node, from level to level, until the tree reaches the maximum spec-

ified depth or the maximum class probability reaches the given threshold

probability.

3.5. Non-uniform discretization with fuzzy sets

In this section, we discuss two alternative discretization techniques that can

be used instead of the uniform method described above: percentile-based dis-

cretization and entropy-based discretization. Basically, fuzzy discretization

provides an interpretation between numerical data and linguistic data based

on label semantics. The effectiveness of fuzzy discretization depends much on

the algorithm�s performance based on the linguistic data. The simplest ap-

proach is to use uniformly distributed fuzzy sets for discretization. However,
in some real-world applications, background knowledge about attributes

may be available and can be used directly for discretization rather than an

automatic discretization technique. For example, a feature ranging from 1 to

99 to describe human age can be uniformly discretized into 3 intervals:

[1, 33], [34, 66] and [67, 99]. But our background knowledge suggesting that

the partition [1, 25], [26, 50] and [50, 99] may be more reasonable. However,

if no relevant background knowledge is available, the question remains as to

whether we can improve on uniform discretization.
In the LDT model, focal elements are directly used as branches in building

the linguistic decision tree but not the fuzzy sets. In fact, there is a unique map-

ping from trapezoidal fuzzy sets to focal elements which can be represented by

triangular functions. 2 Formally, these functions correspond to the mx(F) as x

varies, for each focal element F. In order to improve the performance of our

algorithm, we need to generate focal elements that are as discriminative as pos-

sible and the associated fuzzy sets can then be obtained according to Defini-

tions 2 and 5. See Fig. 5, for example, where we obtain the discriminative
focal elements (asymmetric triangular fuzzy sets) using the percentile-based
2 The focal elements at the two extreme sides are still trapezoidal and not triangular, for example

see Fig. 5.
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Fig. 5. An example illustrating the relation between fuzzy sets and focal elements based on given

fuzzy sets.
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discretization outlined below and then generate associated trapezoidal fuzzy

sets using Definitions 2 and 5. The following two discretization methods are

introduced and will be used to generate fuzzy labels in further experimental

studies.

3.5.1. Percentile-based discretization

In this approach discretization is based on data distribution, so that the

attribute universe is partitioned into intervals which each contains approxi-
mately the same number of data elements. It is a very intuitive way for gener-

ating fuzzy sets. For example, see Fig. 5 where the continuous attribute

universe for variable x ranging from 0 to 200 is labeled by 3 fuzzy sets: small,

medium and large (NF = 3). According to the assumptions we made in Section

2, there are 5 focal elements. We then need 4 cut points that partition the uni-

verse into 5 intervals each containing approximately the same number of exam-

ples. The functions of focal elements mx(F) as x varies are drawn in the upper

sub-figure and the fuzzy sets obtained are shown in the lower sub-figure.

3.5.2. Entropy-based discretization

In this approach, the discretization is based on the expected entropy of

the resulting partition. In fact we aim to obtain the partition maximizing the

information gain [12]. For a particular attribute, suppose we have a set of data
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values S = {x1, . . . , xN} according to which we want to define q focal elements,

then initially we need to find q � 1 cut points forming a partition of the uni-

verse. These boundary points are identified so as to maximize information gain

in the following way. Every pair of adjacent data points suggests a potential

boundary point: ci = (xi + xi+1)/2 where i = 1, . . . , N � 1. Now Fayyad [4] has

proved that only the class boundary points can be the boundary points if we
are to obtain the maximum information in classification, which implies that

ci cannot lead to a partition that has maximum information gain if xi and

xi+1 belong to the same class. Therefore, we should generate a candidate set,

which contains all of class boundary points, from which we then need to find

q � 1 points with which we can maximize the information gain defined by Eq.

(11) [12]:

GainðS;HÞ ¼ EntropyðSÞ �
X

v¼1;...;q

jSvj
jSj EntropyðSvÞ ð11Þ

where H is a subset of the candidate set containing the q � 1 cut points. The cut

points partition the original universe S into q intervals: S1 . . . , Sq. And the en-

tropy is defined in Eq. (12), where m is the number of classes and pi is the per-

centage of instances belong to a particular class within S:

EntropyðSÞ ¼
Xm
i¼1

�pilog2pi ð12Þ
3.6. Experimental studies

We evaluated the LID3 algorithm by using 14 datasets taken from the UCI

Machine Learning repository [3]. These datasets have representative properties
of real-world data, such as missing values, multi-classes, mixed-type data

(numerical, nominal) and unbalanced class distributions, etc. Table 3 shows

the dataset, the number of classes, the number of instances, the number of

numerical (Num.) and nominal (Nom.) attributes and whether or not the data-

base contains missing values.
3.6.1. Experimental strategies

In the following experiments, unless otherwise stated, attributes are discret-
ized by 2 trapezoidal fuzzy sets with 50% overlap, and classes are evenly splited

into two sub-datasets, one half for training and the other half for testing, this is

referred to as 50–50 split experiment. The maximal depth is set manually and

the results presented in this paper show the best performance of LID3 across a

range of depth settings.We also test the LID3 algorithm with different thresh-

old probabilities T ranging from 0.6 to 1.0 in steps of 0.1 and for the different

fuzzy discretization methods: uniform (Uni), entropy-based (En) and percen-



Table 3

Descriptions of datasets from UCI repository

No. Dataset Classes Size Missing values Num. of attributes

Numerical Nominal

1 Balance 3 625 No 4 0

2 Breast-cancera 2 286 Yes 3 6

3 Breast-w 2 699 No 9 0

4 Ecoli 8 336 No 7 1

5 Glass 6 214 No 9 0

6 Heart-c 2 303 Yes 6 7

7 Heart-Statlog 2 270 No 7 6

8 Heptitis 2 155 Yes 6 13

9 Ionosphere 2 351 No 34 0

10 Iris 3 150 No 4 0

11 Liver 2 345 No 6 0

12 Pima 2 768 No 8 0

13 Sonarb 2 208 No 60 0

14 Wine 3 178 No 14 0

a There are nine nominal attributes in the dataset, but three of them are ordered and therefore

can be treated as numerical attributes.
b A particular single split is used.
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tile-based (Per). For each dataset, we ran 50–50 random split experiment for 10

times. The average test accuracy with standard deviation are shown in the

right-hand side of Table 5, the probability and the depth at which we obtain

this accuracy are listed in Table 4.

3.6.2. The influence of the threshold probability

As can be seen from the results, the best accuracy is usually obtained with

high threshold probabilities T = 0.9 or T = 1.0, especially for datasets with only
numerical attributes (such as breast-w, iris, balance, wine) or where numerical

attributes play important roles in learning (ecoli, heptitis). Recent work on

PETs (Probability Estimation Trees) [15] also suggests that the full expanded

estimation trees give better performance than pruned trees. 3 The reason for

this is that the heuristics used to generate small and compact tree by pruning

tend to reduce the quality of the probability estimates [15]. In this context lin-

guistic decision trees can be thought of as a type of probability estimation trees

but where the branches correspond to linguistic descriptions of objects.
The difference in accuracy resulting from varying the threshold probability

T is quite data dependent. For instance, Fig. 6 shows the results of four typical
3 In classical decision tree learning, pruning can reduce overfitting so that the pruned trees have

better generalization and perform better then unpruned trees. However, this is not the case for

PETs [15].



Table 4

Summary of the threshold probabilities and depths for obtaining the best accuracy with different

discretization methods on the given datasets

No. LID3-Uniform LID3-Entropy LID3-Percentile

Threshold Depth Threshold Depth Threshold Depth

1 1.0 4 1.0 4 1.0 4

2 0.7 2 0.7 2 0.7 2

3 1.0 4 1.0 3 1.0 3

4 1.0 7 1.0 7 1.0 7

5 0.9 9 0.8 9 0.8 8

6 0.9 3 0.9 4 0.9 3

7 0.9 3 0.9 3 0.9 4

8 0.9 4 0.9 4 0.9 3

9 0.9 6 0.9 6 0.9 6

10 1.0 3 1.0 3 1.0 3

11 0.9 5 1.0 5 1.0 5

12 0.9 5 0.9 4 0.9 3

13 1.0 8 1.0 8 1.0 8

14 1.0 4 1.0 5 1.0 5
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datasets: breast-w, heart-statlog, glass and breast-cancer. In breast-w, the accu-

racy curves are nested relative to increasing values of T. The models with high

T values outperform those with lower T values in all depths. Dataset iris, bal-

ance, sonar, wine, ecoli also behave in this way. On the other hand, for datasets

heart-statlog, pima, liver, heart-c and heptitis, the accuracy curve of T = 0.9 is

better than all other T values at certain depths. In addition, datasets glass and

ecoli have accuracy curves which are very close to each other and are even iden-

tical on some trials. For the breast-cancer dataset the accuracy actually de-
creases with increasing T.

3.6.3. Comparing LID3 to other machine learning algorithms

From Table 4, we also see that the optimal values of T and depth are rela-

tively invariant across the discretization techniques. Overall the entropy-based

and percentile-based discretization methods performed better than the uniform

discretization although no statistically significant difference was found between

the three methods. We now compare LID3 with different discretization with
C4.5, Naive Bayes (N.B.) Learning and Neural Networks (N.N.) 4 using 10

50–50 splits on each dataset and the average accuracy and standard deviation

for each test are shown in Table 5.

The reason of choosing these three particular learning algorithms is as fol-

lows; C4.5 is the most well-known tree induction algorithm, Naive Bayes is a
4 WEKA [19] is used to generate the results of J48 (C4.5 in WEKA) unpruned tree, Naive Bayes

and Neural Networks with default parameter settings.
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Fig. 6. Comparisons of accuracy at different depth with threshold probability ranges from 0.6 to

1.0 on four typical datasets.
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simple but effective probability estimation method and neural networks are a

blackbox model well known for its high predictive accuracy. We then carried

out paired t-tests [12] with confidence level 90% to compare LID3-Uniform,

LID3-Entropy and LID3-Percentile with each of the three algorithms. A sum-

mary of the results is shown in Table 6.

Across the data sets, all LID3 algorithms (with different discretization tech-

niques) outperform C4.5, with LID3-Percentile achieving the best results with

10 wins, 4 ties and no losses. The performance of the Naive Bayes algorithm
and LID3-Uniform is roughly equivalent although LID3-Entropy and LID3-

Percentile outperform Naive Bayes. From Table 5, we can see that the datasets

on which Naive Bayes outperforms LID3 are those with a mixture of contin-

uous and discrete attributes, namely heart-c, heart-statlog and heptitis. Most

of the comparisons with Neural Network result in ties rather than wins or

losses, especially for LID3-Entropy and LID3-Percentile. Due to the limited



Table 5

Accuracy of LID3 based on different discretization methods and three other well-known machine

learning algorithms

No. C4.5 N.B. N.N. LID3-U LID3-E LID3-P

1 79.20 ± 1.53 89.46 ± 2.09 90.38 ± 1.18 83.80 ± 1.19 83.07 ± 3.22 86.23 ± 0.97

2 69.16 ± 4.14 71.26 ± 2.96 66.50 ± 3.48 73.06 ± 3.05 73.47 ± 2.66 73.06 ± 3.05

3 94.38 ± 1.42 96.28 ± 0.73 94.96 ± 0.80 96.43 ± 0.70 96.11 ± 0.78 96.11 ± 0.89

4 78.99 ± 2.23 85.36 ± 2.42 82.62 ± 3.18 85.41 ± 1.94 86.53 ± 1.28 85.59 ± 2.19

5 64.77 ± 5.10 45.99 ± 7.00 64.30 ± 3.38 65.96 ± 2.31 65.60 ± 2.57 65.87 ± 2.32

6 75.50 ± 3.79 84.24 ± 2.09 79.93 ± 3.99 76.71 ± 3.81 78.09 ± 3.58 77.96 ± 2.88

7 75.78 ± 3.16 84.00 ± 1.68 78.89 ± 3.05 76.52 ± 3.63 78.07 ± 3.63 79.04 ± 2.94

8 76.75 ± 4.68 83.25 ± 3.99 81.69 ± 2.48 82.95 ± 2.42 83.08 ± 2.82 83.08 ± 1.32

9 89.60 ± 2.13 82.97 ± 2.51 87.77 ± 2.88 88.98 ± 2.23 89.11 ± 2.30 88.01 ± 1.83

10 93.47 ± 3.23 94.53 ± 2.63 95.87 ± 2.70 96.00 ± 1.26 96.13 ± 1.60 96.40 ± 1.89

11 65.23 ± 3.86 55.41 ± 5.39 66.74 ± 4.89 58.73 ± 1.99 64.62 ± 2.80 69.25 ± 2.84

12 72.16 ± 2.80 75.05 ± 2.37 74.64 ± 1.41 76.22 ± 1.81 76.22 ± 1.85 76.54 ± 1.34

13 70.48 ± 0.00 70.19 ± 0.00 81.05 ± 0.00 86.54 ± 0.00 87.50 ± 0.00 89.42 ± 0.00

14 88.09 ± 4.14 96.29 ± 2.12 96.85 ± 1.57 95.33 ± 1.80 95.78 ± 1.80 95.89 ± 1.96

Table 6

Summary of comparisons of LID3 based on different discretization methods with three other well-

known machine learning algorithms

LID3-Uniform vs. LID3-Entropy vs. LID3-Percentile vs.

C4.5 9 wins–4 ties–1 losses 9 wins–5 ties–0 losses 10 wins–4 ties–0 losses

N.B. 3 wins–8 ties–3 losses 7 wins–4 ties–3 losses 7 wins–4 ties–3 losses

N.N. 5 wins–6 ties–3 losses 5 wins–8 ties–1 losses 5 wins–8 ties–1 losses
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number and type of datasets we used for evaluation, we may not draw the

strong conclusion that LID3 outperforms all the other three algorithms. How-

ever we can at least conclude that based on our experiments, the LID3 outper-

forms C4.5 and has equivalent performance to Naive Bayes and the Neural

Networks. For the datasets with only numerical values, LID3 outperforms

both C4.5 and Naive Bayes. Between different discretization methods, percen-

tile-based and entropy-based approaches achieve better results than uniform

discretization.
4. Forward merging of branches

In the last section, we showed that LID3 performs at least as well as and

often better than three well-known classification algorithms across a range of

datasets. However, even with only two fuzzy sets for discretization, the number

of branches increases exponentially with the depth of the tree. Unfortunately,
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the transparency of the LDT decreases with the increasing number of branches.

To help to maintain transparency by generating more compact trees, a forward

merging algorithm based on the LDT model is proposed in this section and

experimental results are given to support the validity of our approach.

4.1. Forward merging algorithm

As we have seen in Section 3.5, given a continuous universe with a full fuzzy

covering of NF trapezoidal fuzzy sets, the focal elements can be represented by

q (q = 2NF � 1) triangular functions. If we vary x in an increasing manner, the

focal elements then occur in the following natural order F1, . . . , Fq. We referred

to Fi and Fi+1 as being adjacent focal elements for F i 2 F and i = 1, . . . , q � 1.

As described in Section 3, a node (if it is not terminated according to threshold

probability T) is fully expanded with its focal elements. See Fig. 7a for instance,
where the node is expanded into five leaves LF1, . . . , LF5 with the following fo-

cal elements: {small}, {small, medium}, {medium}, {medium, large} and

{large}, where leaves next to each other (e.g., {small} and {small, medium})

are adjacent focal elements. The branches whose leaves are adjacent focal ele-

ments are referred as adjacent branches. If any of two adjacent branches have

sufficiently similar class probabilities according to some criteria, these two

branches give similar classification results and therefore can then be merged

into one branch in order to obtain a more compact tree (see Fig. 7b). We em-
ploy a merging threshold to determine whether or not two adjacent branches

can be merged.

Definition 12 (Merging threshold). In a linguistic decision tree, if the maxi-

mum difference between class probabilities of two adjacent branches B1 and B2

is less than or equal to a given merging threshold Tm, then the two branches can

be merged into one branch. Formally, if

T m P max
c2C

ðjPrðcjB1Þ � PrðcjB2ÞjÞ ð13Þ
(a) (b) (c)

{l}

{m ,l}

{m }

{s, m }

{s}

LF 5

LF 4

LF 3

LF 2

LF 1

LF 1

{LF 2, LF 3}

LF 4

LF 5

LF 1

{LF 2, LF 3, LF 4}

LF 5

Fig. 7. Illustration of branch merging.



Table 7

Comparisons of accuracy Acc and the number of leaves (rules) NR with different merging thresholds

Tm across a set of UCI datasets

No. NF Tm = 0 Tm = 0.1 Tm = 0.2 Tm = 0.3 Tm = 0.4

Acc NR Acc NR Acc NR Acc NR Acc NR

1 2 83.80 77 84.19 51 81.09 25 75.08 10 47.03 1

2 2 73.06 17 71.67 12 71.11 9 59.65 4 61.25 2

3 2 96.43 57 95.80 29 95.74 16 95.63 9 95.49 4

4 3 85.41 345 85.29 445 84.24 203 83.88 104 82.65 57

5 3 65.69 329 62.84 322 64.04 190 44.31 86 35.41 49

6 2 76.71 37 78.68 31 78.55 22 78.42 18 68.49 11

7 3 76.52 31 78.37 35 78.44 23 77.85 12 72.22 7

8 3 82.95 11 81.28 24 80.77 18 80.64 15 80.77 13

9 3 88.98 45 87.90 78 88.47 41 89.20 30 89.20 26

10 3 96.00 21 95.47 23 95.20 18 95.20 14 94.27 10

11 2 58.73 83 56.30 43 55.90 11 57.34 4 57.92 3

12 2 76.12 27 75.31 20 74.45 5 73.85 3 65.10 1

13 2 86.54 615 88.46 516 85.58 337 81.73 93 49.04 6

14 3 95.33 67 93.78 80 94.11 50 93.56 36 89.67 24

The results for Tm = 0 are obtained with NF = 2 and results for other Tm values are obtained with

NF values listed in the second column of the table.
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Fig. 8. The change in accuracy and number of leaves as Tm varies on the breast-w dataset with

NF = 2.
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where C = {c1, . . . , cm} is the set of classes, then B1 and B2 can be merged into

one branch MB.

Definition 13 (Merged branch). A merged branch MB with k nodes is defined

as

MB ¼ hMj1 ; . . . ;Mjk i
where Mj ¼ fF 1

j ; . . . ; F
w
j g is a set of focal elements such that F i

j is adjacent to

F iþ1
j for i = 1, . . . , w � 1, The associate mass for Mj is given by

mxðMjÞ ¼
Xw
i¼1

mxðF i
jÞ ð14Þ

where w is the number of merged adjacent focal elements for attribute j.

Based on Eqs. (3), (4) and (14) we use the following formula to calculate the

class probabilities given a merged branch:

PrðCtjMBÞ ¼

P
i2LDt

Qk
r¼1

mxjr ðiÞðMjrÞ

P
i2LD

Qk
r¼1

mxjr ðiÞðMjrÞ
ð15Þ
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NF = 3. While the dot trial Tm = 0 is with NF = 2.
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When the merging algorithm is applied in learning a linguistic decision tree, the

adjacent branches meeting the merging criteria will be merged and reevaluated

according to Eq. (15). Then the adjacent branches after the first round of merg-

ing will be examined in a further round of merging, until all adjacent branches

cannot be merged further. We then proceed to the next depth. See Fig. 7b and c

where leaves LF2 and LF3 are merged in the first round of merging, and LF4
and {LF2, LF3} are then merged further {LF2, LF3, LF4} if they meet the merg-

ing criteria in the second round of merging. The merged branches can be by

compound expressions as described in a following section. The merging is ap-

plied as the tree develops from the root to the maximum depth and hence is

referred to as forward merging.
4.2. Experimental studies

We tested the forward merging algorithm on the UCI datasets listed in Ta-

ble 3 with 10 50–50 split experiments and the results are shown in Table 7.

Obviously, there is a tradeoff between the algorithm accuracy and the algo-

rithm transparency in terms of the number of leaves. The merging threshold

Tm plays an important role in the accuracy–transparency tradeoff problem.
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Algorithm accuracy tends to increase while algorithm transparency decreases

with decreasing Tm and vice versa.

The number of fuzzy sets NF in the merging algorithm is also a key para-

meter. Compared to NF = 3, setting NF = 2 can achieve better transparency,

but for some datasets, with NF = 2, the accuracy is greatly reduced although

the resulting trees have significantly fewer of branches. For example, Figs. 8
and 9 show the change in test accuracy and the number of leaves (or the num-

ber of rules interpreted from a LDT) for different Tm on the breast-w dataset.

Fig. 8 is with NF = 2 and Fig. 9 with NF = 3. Fig. 8 shows that the accuracy is

not greatly influenced by merging, but the number of branches are greatly re-

duced. This is especially true for the curve marked by �+� corresponding to

Tm = 0.3 where applying forward merging, the best accuracy (at the depth 4)

is only reduced by approximately 1%, whereas, the number of branches is re-

duced by roughly 84%. However, in Fig. 9, at the depth 4 with Tm = 0.3, the
accuracy also reduces about 1% but the number of branches only reduces by

55%. So, for this dataset, we should choose NF = 2 rather than NF = 3.

However, this is not always the case. For the dataset iris, the change in accu-

racy and the number of branches against depth with NF = 2 and NF = 3 are

shown in Figs. 10 and 11, respectively. As we can see from Fig. 10, by applying
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the forward merging algorithm, the accuracy is greatly changed. The best accu-

racy with merging is roughly 10% worse than non-merging algorithm. But for

NF = 3, as we can see from Fig. 11, the accuracy is not that greatly reduced

compared to NF = 2, and we still obtain a reduced number of branches, com-

pared to the accuracy for Tm = 0 obtained from NF = 2. In this case we should

prefer NF = 3.
Table 7 shows the results with optimal NF and different Tm ranging from 0

to 0.4, where Tm = 0 represents no merging. Acc represents the average accu-

racy from 10 runs of experiments and NR is the average number of rules

(leaves). Unless otherwise stated, the results obtained in this section are with

the threshold probability set to T = 1. The results for Tm from 0.1 to 0.4 are

obtained at the depth where the optimal accuracy is found when Tm = 0. As

we can see from the table, for most cases, the accuracy before and after merg-

ing are not significantly different but the number of branches are dramatically
reduced. In some cases, the merging algorithm even outperforms the LID3

without merging. The possible reason for this is because the merging algorithm

generates self-adapting granularities based on class probabilities. Compared to

other methods that discretize attributes independently, merging may generate a

more reasonable tree with more appropriate information granules.
5. Linguistic reasoning

In this section we use label semantics to provide a linguistic interpretation

for LDTs. We also use this framework to show how LDTs can be used to clas-

sify data with linguistic constraints on attributes. In addition, a method for clas-

sification on fuzzy data is proposed and supported with empirical studies on a

toy problem. Basically, we interpret the main logical connectives as follows: �L
means that L is not an appropriate label, L1 ^ L2 means that both L1 and L2

are appropriate labels, L1 _ L2 means that either L1 or L2 are appropriate la-
bels, and L1 ! L2 means that L2 is an appropriate label whenever L1 is. If we

consider label expressions formed from LA by recursive application of the con-

nectives then an expression h identifies a set of possible label sets according to

the following k-function.
Definition 14 (k-function). Let h and u be expressions generated by recursive

application of the connectives �, _, ^ and ! to the elements of LA. Then the

set of possible label sets defined by a linguistic expression can be determined
recursively as follows:

(i) kðLiðxÞÞ ¼ fS � FjfLig � Sg
(ii) kð:hÞ ¼ kðhÞ
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(iii) kðh ^ uÞ ¼ kðhÞ \ kðuÞ
(iv) kðh _ uÞ ¼ kðhÞ [ kðuÞ
(v) kðh ! uÞ ¼ kðhÞ [ kðuÞ

It should also be noted that the k-function provides us with notion of logical

equivalence for label expressions

h�Fu () kðhÞ ¼ kðuÞ

Intuitively, k(h) corresponds to those subsets of F identified as being possi-

ble values of Dx by expression h. In this sense the imprecise linguistic restriction

�x is h� on x corresponds to the strict constraint Dx 2 k(h) on Dx. Hence, we can

view label descriptions as an alternative to linguistic variables as a means of

encoding linguistic constraints [9]. Here we consider the linguistic constraints
take the form of h = hx1 is h1, . . . , xn is hni, where hj represents a label expres-

sion based on LAj : j = 1, . . . , n.

Example 5. Given a continuous variable x and LA = {small, medium, large},

suppose we are told that ‘‘x is not large but it is small to medium’’. This

constraint can be interpreted as the logical expression

hx ¼ :large ^ ðsmall _ mediumÞ
According to Definition 14, the possible label sets of the given linguistic con-

straint hx are

kðhxÞ ¼ kð:large ^ ðsmall _ mediumÞÞ
¼ ffsmallg; fsmall;mediumg; fmediumgg
5.1. Linguistic interpretation

Based on the inverse of the k-function (Definition 14), a set of linguistic rules

(or label expressions) can be obtained from a set of possible label sets. For

example, suppose we are given the possible label sets {{small}, {small, me-

dium}}, {medium}}, which does not have an immediately obvious interpreta-

tion. However using the a-function (see below), we can convert this set into

a corresponding linguistic expression �large ^ (small _ medium) or its logical
equivalence. More details about linguistic reasoning can be found in [8].
Definition 15 (a-Function).

8F 2 F let NðF Þ ¼
[

F 02F:F 0�F
F 0

 !
� F ð16Þ
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then aF ¼
^
L2F

L

 !
^

^
L2NðF Þ

:L
 !

ð17Þ

We can then map a set of focal sets to label expressions based on the a-function
as follows:

8R 2 F hR ¼
_
F2R

aF where kðhRÞ ¼ R ð18Þ
The motivation of this mapping is a follows. Given a focal set {s, m} this
states that the labels appropriate to describe the attribute are exactly small

and medium. Hence, they include s and m and exclude all other labels that oc-

cur in focal sets that are supersets of {s, m}. Given a set of focal sets

{{s, m}, {m}} this provides the information that the set of labels is either

{s, m} or {m} and hence the sentence providing the same information should

be the disjunction of the a sentences for both focal sets. The following example

gives the calculation of the a-function.

Example 6. Let LA = {very small (vs), small (s), medium (m), large (l), very

large (vl)} and F ¼ ffvs; sg; fsg; fs;mg; fmg; fm; lg; flg; fl; vlgg. For calculat-
ing a{l}, we obtain Also we can also obtain

F 0 2 F : F 0 � flg ¼ ffm; lg; flg; fl; vlgg ¼ fm; l; vlg

NðflgÞ ¼
[

F 02F:F 0�F
F 0

 !
� flg ¼ fl; vl;mg � flg ¼ fvl;mg

aflg ¼
^
L2F

L

 !
^

^
L2NðF Þ

:L
 !

¼ flg ^ ð:m ^ :vlÞ ¼ :m ^ l ^ :vl

Also we can also obtain

afm;lg ¼ m ^ l; afl;vlg ¼ l ^ vl

Hence, a set of label sets {{m, l}, {l}, {l, vl}} can be represented by a linguistic

expression as follows:

hffm;lg;flg;fl;vlgg ¼ afm;lg _ aflg _ afl;vlg

¼ ðm ^ lÞ _ ð:m ^ l:vlÞ _ ðl ^ vlÞ�Flarge

where ��F� represents logical equivalence (see Definition 14).

As discussed in the last section, a merged LDT was obtained from a real-

world dataset �iris� at the depth 2 when Tm = 0.3 and where LAj = {smallj(sj),

mediumj(mj), largej(lj) j j = 1, . . . , 4}.
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LDTM-iris ¼ fMB1;MB2;MB3;MB4;MB5;MB6;MB7;MB8g
¼ fhhfs3gi; 1:0000; 0:0000; 0:0000i

hhffs3;m3g; fm3gg; fs4gi; 1:0000; 0:0000; 0:0000i
hhffs3;m3g; fm3gg; ffs4;m4g; fm4ggi; 0:0008; 0:9992; 0:0000i
hhffs3;m3g; fm3gg; fm4; l4gi; 0:0000; 0:5106; 0:494i
hhffs3;m3g; fm3gg; fl4gi; 0:0000; 0:0556; 0:9444i
hhffm3; l3g; fl3gg; fs4gi; 0:3333; 0:3333; 0:3333i
hhffm3; l3g; fl3gg; ffs4;m4g; fm4ggi; 0:000; 0:8423; 0:1577i
hhffm3; l3g; fl3gg; ffm4; l4g; fl4gi; 0:000; 0:0913; 0:9087ig

We can then translate this tree into a set of linguistic expressions as follows:

LDTM-iris ¼ fhhs3 ^ :ðm3 _ l3Þi; 1:0000; 0:0000; 0:0000i
hhm3 ^ :l3; s4 ^ :ðm4 _ l4Þi; 1:0000; 0:0000; 0:0000i
hhm3 ^ :l3;m4 ^ :l4i; 0:0008; 0:9992; 0:0000i
hhm3 ^ :l3;:s4 ^ m4 ^ l4i; 0:0000; 0:5106; 0:4894i
hhm3 ^ :l3; ðs4 _ m4Þ ^ l4i; 0:0000; 0:0556; 0:9444i
hhl3; s4 ^ :ðm4 _ l4Þi; 0:3333; 0:3333; 0:3333i
hhl3;m4 ^ :l4i; 0:000; 0:8423; 0:1577i
hhl3; l4i; 0:000; 0:0913; 0:9087ig

Furthermore, the tree itself can be rewritten as a set of fuzzy rules. For example
branch 2 corresponds to the rule: IF attribute 3 is medium but not large and

attribute 4 is only small, THEN the class probabilities given this branches

are (1.0000, 0.0000, 0.0000).

5.2. Classification under linguistic constraint

Consider the vector of linguistic constraint ~h ¼ hh1; . . . ; hni, where hj is the
linguistic constraints on attribute j. We can evaluate a probability value for
class Ct conditional on this information using a given linguistic decision tree

as follows. The mass assignment given a linguistic constraint h is evaluated by

8F j 2 Fj; mhjðF jÞ ¼
pmðF jÞP

F j2kðhjÞ
pmðF jÞ

if F j 2 kðhjÞ

0 otherwise

8<
: ð19Þ

where pm(Fj) is the prior mass for focal elements F j 2 Fj derived from the
prior distribution p(xj) on Xj as follows:

pmðF jÞ ¼
Z

Xj

mxðF jÞpðxjÞdxj ð20Þ
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Usually, we assume that p(xj) is the uniform distribution over Xj so that

pmðF jÞ /
Z

Xj

mxðF jÞdxj ð21Þ

More details on calculation of mass assignment given a linguistic constraint are

given in Example 7. For branch B with s nodes, the probability of B given~h is

evaluated by

PrðBj~hÞ ¼
Yk
r¼1

mhjrðF jrÞ ð22Þ

and therefore, by Jeffrey�s rule [7]

PrðCtj~hÞ ¼
Xs
v¼1

PrðCtjBvÞPrðBvj~hÞ ð23Þ
Example 7. Given the LDT in Example 4 Section 3.3 suppose we know that

for a particular data element ‘‘x1 is not large and x2 is small’’. We then can

translate this knowledge into the following linguistic constraint vector:

~h ¼ hh1; h2i ¼ h:large1; small2i

By applying the k function (Definition 14), we can generate the associated label
sets, so that

kð:large1Þ ¼ ffsmall1gg; kðsmall2Þ ¼ ffsmall2g; fsmall2; large2gg

suppose the prior mass assignments are

pm1 ¼ fsmall1g : 0:4; fsmall1; large1g : 0:3; flarge1g : 0:3

pm2 ¼ fsmall2g : 0:3; fsmall2; large2g : 0:2; flarge2g : 0:5

From this, according to Eq. (19) we obtain that

mh1 ¼ fsmall1g : 0:4=0:4 ¼ fsmall1g : 1

mh2 ¼ fsmall2g : 0:3=ð0:3þ 0:2Þ; fsmall2; large2g : 0:2=0:2ð0:2þ 0:3Þ
¼ fsmall2g : 0:6; fsmall2; large2g : 0:4

This gives

PrðB1j~hÞ ¼ mh1ðfsmall1gÞ � mh2ðfsmall2gÞ ¼ 1� 0:6 ¼ 0:6

PrðB2j~hÞ ¼ mh1ðfsmall1gÞ � mh2ðfsmall2; large2gÞ ¼ 1� 0:4 ¼ 0:4

PrðB3j~hÞ ¼ PrðB4j~hÞ ¼ PrðB5j~hÞ ¼ PrðB6j~hÞ ¼ PrðB7j~hÞ ¼ 0
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Hence, according to Jeffrey�s rule

PrðC1j~hÞ ¼
X7
v¼1

PrðBvj~hÞPrðC1jBvÞ

¼
X
v¼1;2

PrðBvj~hÞPrðC1jBvÞ ¼ 0:6� 0:3þ 0:4� 0:5 ¼ 0:38

PrðC2j~hÞ ¼
X7
v¼1

PrðBvj~hÞPrðC2jBvÞ

¼
X
v¼1;2

PrðBvj~hÞPrðC2jBvÞ ¼ 0:6� 0:7þ 0:4� 0:5 ¼ 0:62

The methodology for classification under linguistic constraints allows us to

fuse the background knowledge in linguistic form into classification. This is
one of the advantages of using high-level knowledge representation language

models such as label semantics.

5.3. Classification given fuzzy data

In previous sections LDTs have only been used to classify crisp data where

objects are described in terms of precise attribute values. However, in many

real-world applications limitations of measurement accuracy means that only
imprecise values can be realistically obtained. In this section we introduce

the idea of fuzzy data and show how LDTs can be used for classification in this

context. Formally, a fuzzy database is defined to be a set of elements or objects

each described by linguistic expressions rather than crisp values. In other words

FD ¼ fhh1ðiÞ; . . . ; hnðiÞi : i ¼ 1; . . . ;Ng
Currently there are very few benchmark problems of this kind with fuzzy attri-
bute values. This is because, traditionally only crisp data values are recorded

even in cases where this is inappropriate. Hence, we have generated a fuzzy

database from a toy problem where the aim is to identify the interior of a figure

of eight shape. Specifically, a figure of eight shape was generated according to

the equation x ¼ 2ð�0:5Þðsinð2tÞ � sinðtÞ and y ¼ 2ð�0:5Þðsinð2tÞ þ sinðtÞÞ where

t 2 [0, 2p] (see Fig. 13). Points in [�1.6, 1.6]2 are classified as legal if they lie

within the �eight� shape (marked with ·) and illegal if they lie outside (marked

with points).
To form the fuzzy database we first generated a crisp database by uniformly

sampling 961 points across [�1.6, 1.6]2. Then each data vector hx1, x2iwas con-
verted to a vector of linguistic expressions hh1; h2i as follows: hj ¼ hRj where
Rj ¼ fF 2 Fj : mxjðF Þ > 0g A LDT was then learnt by applying the LID3

algorithm to the crisp database. This tree was then used to classify both the

crisp and fuzzy data. The results are shown in Table 8 and the results with

NF = 7 are shown in Fig. 12.



Table 8

Classification accuracy based on crisp data and fuzzy data on the �eight� problem

NF = 3 NF = 4 NF = 5 NF = 6 NF = 7

Crisp data 87.72% 94.17% 95.94% 97.29% 98.54%

Fuzzy data 79.29% 85.85% 89.39% 94.17% 95.01%
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Fig. 12. Classification on crisp dataset (left) and fuzzy data without masses (right), where each

attribute is discretized uniformly by 7 fuzzy sets.
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Fig. 13. Testing on the �eight� problem with linguistic constraints ~h, where each attribute is

discretized by five trapezoidal fuzzy sets: very small, small, medium, large and very large.
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As we can see from Table 8, our model gives a reasonable approximation of

the legal data area, though it is not as accurate as testing on crisp data. The
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accuracy increases with NF the number of fuzzy sets used for discretization.

These results show that LDT model can perform well in dealing with fuzzy

and ambiguous data. Here the �eight� problem is also used for testing classifi-

cation with linguistic constraints in the following example.

Example 8. Suppose a LDT is trained on the �eight� database where each
attribute is discretized by five fuzzy sets uniformly: very small (vs), small (s),

medium (m), large (l) and very large (vl). Further, suppose we are given the

following description of data points:

~h1 ¼ hx is vs _ s ^ :m; y is vs _ s ^ :mi
~h2 ¼ hx is m ^ l; y is s ^ mi
~h3 ¼ hx is s ^ m; y is l _ vli

Experimental results obtained based on the approach introduced in Section 5.2

are as follows:

PrðC1j~h1Þ ¼ 1:000; PrðC2j~h1Þ ¼ 0:000

PrðC1j~h2Þ ¼ 0:000; PrðC2j~h2Þ ¼ 1:000

PrðC1j~h3Þ ¼ 0:428; PrðC2j~h3Þ ¼ 0:572

As we can see from Fig. 13, the above 3 linguistic constraints roughly corre-

spond to the area 1, 2 and 3, respectively. By considering the occurrence of le-

gal and illegal examples within these areas, we can verify the correctness of our

approach.
6. Conclusions

In this paper, a decision tree learning algorithm is proposed based on a ran-

dom set framework for Computing with Words referred to as label semantics.

LID3 is proposed as a modified ID3 algorithm based on label semantics. Un-
like classical decision trees, the new algorithm uses probability estimation

based on linguistic labels. The linguistic labels are based on fuzzy discretization

using a number of different methods including uniform partitioning, a percen-

tile-based partitioning and an entropy-based partitioning. We found that the

percentile-based discretization and entropy-based discretization outperform

uniform discretization, but no statistically significance was found. By testing

our new model on real-world datasets and comparing with three well-know

machine learning algorithms, we found that LID3 outperformed C4.5 on
all given datasets and outperforms Naive Bayes on datasets with numerical
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attributes only. Also it has equivalent classification accuracy and better trans-

parency when compared to back propagation Neural Networks.

In order to obtain a compact tree, a forward merging algorithm was pro-

posed and the experimental results show that the number of branches can be

greatly reduced without a significant loss in accuracy. In the last section, a for-

mal method for interpreting a linguistic decision tree as a set of logical rules of
labels is proposed. It is also show how LDT can be used to classify fuzzy data

where objects are only described in terms of linguistic expressions. Future work

will focus on extending the LDT model from classification problems to predic-

tion problems and to allow information fusion so that background knowledge

can be incorporated into the tree induction process.
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